Finite di erence time domain model for elastic waves in the ground

نویسندگان

  • Christoph T Schroeder
  • Waymond R Scott
چکیده

A two dimensional nite di erence model for elastic waves in the ground has been developed The model uses the equation of motion and the stress strain relation from which a rst order stress velocity formulation is obtained The resulting system of equations is discretized using centered nite di erences A perfectly matched layer surrounds the discretized solution space and absorbs the outward traveling waves The numerical model is validated by comparison to an analytical solution The numerical model is then used to study the interaction of elastic waves with buried land mines Results are presented for a buried antipersonnel mine It can be seen that an air chamber within the mine is excited to resonant oscillations which are clearly visible on the surface above the mine The simulation results agree fairly well with experimental observations Di erences are mainly due to the numerical model being two dimensional whereas the experimental model is three dimensional Currently the nite di erence model is being extended to three dimensions

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orr Sommerfeld Solver Using Mapped Finite Di?erence Scheme for Plane Wake Flow

Linear stability analysis of the three dimensional plane wake flow is performed using a mapped finite di?erence scheme in a domain which is doubly infinite in the cross–stream direction of wake flow. The physical domain in cross–stream direction is mapped to the computational domain using a cotangent mapping of the form y = ?cot(??). The Squire transformation [2], proposed by Squire, is also us...

متن کامل

An efficient finite difference time domain algorithm for band structure calculations of Phononic crystal

In this paper, a new algorithm for studying elastic wave propagation in the phononic crystals is presented. At first, the displacement-based forms of elastic wave equations are derived and then the forms are discretized using finite difference method. So the new algorithm is called the displacement-based finite difference time domain (DBFDTD). Three numerical examples are computed with this met...

متن کامل

An Algorithm for Modeling and Interpretation of Seismoelectric Data

Generally speaking, seismoelectric modeling is a prospecting method based on seismic and electromagnetic waves, in which waves generated by a seismic source at the boundary of the two environments generate a relative fluid-solid motion formed as a result of antagonism between the elastic properties of the environment with the saturated fluid. This research has as its objective, a study of the e...

متن کامل

Wave propagation in anisotropic elastic materials and curvilinear coordinates using a summation-by-parts finite difference method

We develop a fourth order accurate finite di↵erence method for solving the three-dimensional elastic wave equation in general heterogeneous anisotropic materials on curvilinear grids. The proposed method is an extension of the method for isotropic materials, previously described in the paper by Sjögreen and Petersson [J. Sci. Comput. 52 (2012)]. The proposed method discretizes the anisotropic e...

متن کامل

Dynamic Coupled Thermo-Viscoelasticity of a Spherical Hollow Domain

The generalized coupled thermo-viscoelasticity of hollow sphere subjected to thermal symmetric shock load is presented in this paper. To overcome the infinite speed of thermal wave propagation, the Lord-Shulman theory is considered. Two coupled equations, namely, the radial equation of motion and the energy equation of a hollow sphere are obtained in dimensionless form. Resulting equations are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999